

BIKANER TECHNICAL UNIVERSITY, BIKANER

बीकानेर तकनीकी विश्वविद्यालय, बीकानेर OFFICE OF THE DEAN ACADEMICS

7SA6-60.1 WASTE TO ENERGY

Credit: 3	Max Marks: 100 (IA: 30, ETE: 70)
3L+0T+0P	End Term Exam: 3 Hours

COURSE OBJECTIVES:

To provide a comprehensive understanding of waste to energy

COURSE OUTCOMES:

Upon successful completion of the course, the students will be able to:

CO-1: Students will be able to understand the different types of waste.

CO-2: Students will be able to understand the waste to energy conversion technologies.

S.No	Contents	Hours				
1.	Introduction of Bio-Waste: Introduction to bio-resources and agricultural waste,	9				
	Classification and characterization of agricultural waste including animal was Principles of agricultural waste management: RRR approach, Potential of					
	recyclable crop residues and its management, In-situ management of agricultural					
	waste, Role of soil and plants in waste management, Impact of waste on soil and					
	plant quality, Impact on the environment					
2.	Pre-treatment of Bio-waste: Need of bio waste pre-treatment, Pre-treatment	8				
	methods: physical, chemical and biological treatment, Biological processes of					
	waste management, Composting and vermicomposting for bio conservation of					
	biodegradable waste, Manure management during pre-spreading &spreading					
	phase, Methods of preparation of different organic liquid manures from bio-					
	resources					
3.	Bio-conversion technology : organic manure, composting, vermicomposting,	8				
	biogas generation, pyrolysis, operation and management of biogas plants,					
	utilization of biogas and spent slurry, briquetting of biomass as fuel, landfill.					
4.	Thermo-conversion technology: combustion, incineration, Bio-charcoal	8				
	production, gasification, Production of natural source of dietary fiber;					
	antioxidants; pectin; enzymes; organic acids such as acetic acid, ferulic acid,					
	lactic acid and citric acid, Environmental benefit of waste management,					
	Standards to bio- wastes and manures.					
5.	Smart Technologies of waste to energy: Role of IoT and AI in waste-to-energy	7				
	processes, Real-time monitoring of waste conversion systems and Predictive					
	maintenance for waste-to-energy systems					
	Total	40				

TEXT / REFERENCE BOOKS

1. Rogoff Marc J. Waste to Energy. William Andrew Publishing

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004
Website: https://btu.ac.in

BIKANER TECHNICAL UNIVERSITY, BIKANER

बीकानेर तकनीकी विश्वविद्यालय, बीकानेर OFFICE OF THE DEAN ACADEMICS

- 2. Waste to Energy, Shalini Yadav
- 3. Biomass, Bio fuel, Biochemicals waste biorefinery by Thallada Bhaskar, Sunita Varjani and Ashok pandey, Elsevier
- 4. Rai GD (2013). Non-Conventional Energy Sources, Khanna Publishers, Delhi.
- 5. Kothari DP, Singal KC and Ranjan R (2008) Renewable Energy Sources and Emerging Technologies, PHI Learning Pvt. Ltd., New Delhi.
- 6. Solanki CS (2008). Renewal Energy Technologies: A Practical Guide for Beginners" PHI Learning.
- 7. Seveda MS, Narale P and Kharpude SN. Bioenergy Engineering, CRC Press, Taylor & Francis

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेर तकनीकी विष्वविद्यालय, बीकानेर

OFFICE OF THE DEAN ACADEMICS

B.Tech.: Civil Engineering 4th Year - VII Semester

	THEORY									
SN	Category	Course Code	Course Title	Hours			Marks			G 114
				L	Т	P	IA	ЕТЕ	Total	Credit
1	DC	7CE4-01	Numerical Methods for Engineers	3	0	0	30	70	100	3
2	DE	7CE5-11	Departmental Elective IV	2	0	0	30	70	100	2
3	UE	7CE6-60	University Elective I	3	0	0	30	70	100	3
			SUB TOTAL	8	0	0	90	210	300	8
	PRACTICAL & SESSIONAL									
4	DC	7CE4-20	Civil Engineering Software Laboratory	0	0	2	60	40	100	1
6	UI	7CE7-30	Industrial Training	0	0	2*	60	40	100	3
7	01	7CE7-50	Project Stage-1	0	0	4*	60	40	100	2
8	CCA	7CE8-00	SODECA/NCC/NSS/ANANDAM/IPR	-	-	-	-	100	100	1
				0	0	8	180	220	400	7
			TOTAL OF VII SEMESTER	8	0	8	270	430	700	15

L = Lecture, T = Tutorial, P = Practical, IA=Internal Assessment, ETE=End Term Exam, Cr=Credits

^{*}for calculation of contact hours